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Abstract
The behaviour of an electric field in a gravitational field is analysed. It is found
that due to the mass (energy) of the electric field, it is subjected to gravity and
it falls in the gravitational field. This fall curves the electric field, a stress force
(a reaction force) is created, and the interaction of this reaction force with the
static charge gives rise to the creation of radiation.

1. Introduction

In a recently published paper [1] Tartaglia and Ruggiero suggest that a unified approach, which
emphasizes the similarities in handling electromagnetism and gravitation may be helpful in
teaching both theories, and may help students to better assimilate concepts related to these
theories.

In the present work we want to present another aspect of the connection between gravity
and electrodynamics—the behaviour of an electric field (EF) in a gravitational field (GF).
Actually, we consider the EF of a charge supported statically in a GF. This situation is
connected to the equivalence principle (EP), according to which, a freely falling object in a
uniform GF behaves like an object in free space, and a statically supported object in a GF
behaves as if it is accelerated by an external force in a free space. According to classical
electrodynamics, an accelerated charge radiates. Thus, using EP, one should expect that
a supported charge in a GF will also radiate. Many physicists contradict this conclusion,
arguing that the EP is not a general principle, and cannot be used to support the conclusion
that a supported charge in GF radiates [2, 3].

In order to study this question without using EP, we first study the conditions at which
electromagnetic radiation is created, and then investigate whether these conditions exist for a
supported charge in a GF.

2. Radiation from an accelerated charge

In several papers published recently [4–6], the process of creation of electromagnetic radiation
is analysed. For simplicity, we first investigated the most simple case of a linearly accelerated
charge.
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It is generally accepted that a reaction force created when a charge is accelerated is the
force which is responsible for the creation of radiation. However, for many years it was
believed that this reaction force is created by the radiation, and hence it was called ‘radiation
reaction force’. However, at low velocities, the radiation is emitted in a plane perpendicular to
the direction of motion and, hence, cannot impart any counter momentum to the accelerated
charge, and thus no radiation reaction force can be created. This problem was known as the
‘energy balance paradox’ [7], and much effort was invested in finding what is the real reaction
force which is responsible for the creation of the radiation.

In the above-mentioned papers [4–6] it is shown that the EF of an accelerated charge
curves, and a stress force is created in this curved field. It is also found that this stress
force is the main reaction force which is responsible for the creation of the radiation. The
radiation reaction force acts in addition to the stress force, and it becomes significant only at
very high velocities. The stress force, which is proportional to the acceleration of the charge,
interacts with the accelerated charge, and an additional external force is needed to overcome
this reaction (stress) force. The work performed by this additional external force, in addition
to the work performed in creating the kinetic energy of the particle, is the source of the energy
carried by the radiation. Calculation of the power created by this force yields exactly the
Larmor formula for the power carried by the radiation (see appendix A for details). From
these we find that the conditions needed for the creation of radiation are:

(1) the existence of a relative acceleration between the charge and its EF;

(2) curving of the electric field that creates the stress force which is the reaction force
responsible for the creation of the radiation.

We also found that Rc, the radius of curvature of the curved EF, gives a measure for the
characteristic wavelength of the radiation created [5]. Our next task now is to study whether
conditions (1) and (2) do exist in the case of a charge supported at rest in GF.

It was also found that the stress force is inversely proportional to the radius of curvature,
Rc, of the curved EF. Since Rc is inversely proportional to the acceleration, it comes out that the
stress force is proportional to the acceleration of the charge. An additional bonus obtained by
this approach is the justification found for the presence of the term ȧ (= da/dt) in the equation
of motion of the electric charge. This presence demands the supply of a third initial condition
for the solution of the equation of motion, in addition to the two initial conditions (initial
position and initial velocity) demanded in classical mechanics. The supply of the third initial
condition—the initial acceleration, is justified as this acceleration supplies the information
about the stress force, and this is needed to complete the description of all the forces involved
in this configuration.

Analysing the process of the creation of radiation we found that the main feature which
drives this process is the behaviour of the electric field of the accelerated charge. When the
charge is accelerated, its electric field is not accelerated with the charge and, hence, lags
behind the charge and becomes curved. This occurs because the EF, which is an independent
physical entity, once induced by the charge on the space around it, is not attached to the charge
anymore and its behaviour does not depend on the behaviour of the charge. When a charge
is static, its electric field expands in space as concentric circles around the charge. But if the
charge is moving, each circle is centred around the point it was induced from—actually, this
is the way in which retarded potentials are calculated.

When the motion of the charge is of a constant velocity, the ratio between the velocity of
the charge and the expansion velocity of the EF is constant. Hence, the field lines are straight
lines, although they are not spread spherically symmetric around the charge (see [8]). If the



An electric field in a gravitational field 221

Figure 1. A curved field line of a charge supported in a homogenous gravitational field.

motion is of an acceleration, the distances between consecutive circles change continuously,
and this is why the electric field lines become curved.

3. A charge in a gravitational field

After we defined the conditions needed for the creation of radiation by an accelerated charge,
we turn to the case in which a charge is supported statically in a homogenous GF. In figure 1
we plot such a field line of a charge supported statically in a homogenous GF. The equations
of the field lines for a homogenous GF were calculated by Rohrlich [9], and they are given in
appendix B.

Usually, the immediate reaction of people to such a situation is this: ‘the situation is static,
no work is performed in a static situation, and hence no radiation can be created’. However,
the situation is not a static one, but rather a steady-state one, in which the EF of the static
charge falls in the GF. We know that an EF of a charge is an independent physical entity,
and once induced on space, its behaviour no longer depends on the behaviour of the charge
that induced it (see [8]). The charge is supported and remains static. The EF of the charge
is induced on space around the charge. The mass (energy) density of the EF is subjected to
gravity, and it falls in the GF. Due to this fall, the EF becomes curved (as can be observed
in figure 1), and a stress force is created in the EF. This stress force interacts with the static
charge, and this is actually a reaction force that acts between the charge and its falling EF.
This interaction causes a delay in the fall of the EF, braking it from being a free fall. In order
to keep the EF in free fall, the GF has to perform extra work on the EF. This extra work is
the source of the energy carried by the radiation. Since this extra work is performed by the
gravitational source that creates the GF, this source loses energy—namely, the gravitational
energy of the system becomes lower. The energy carried by the radiation is created at the
expense of the gravitational energy of the system.

Thus, although the charge remains static, the system that contains the charge, its EF and
the gravitational source is not static, and it does radiate. Extra work is performed by the
gravitational source on the falling EF, which is converted to energy carried by the radiation.

It comes out that, indeed, the supported charge does not radiate (because it is static and no
work can be performed on a static object). However, the configuration in which the charge is
supported in a GF does radiate—the work that creates the radiation is performed by the source
of the GF, and it is performed on the EF, against the reaction (stress) force, to maintain its free
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fall. The energy loss, carried away by the radiation, is supplied by the object that performs
the work—the gravitational field.

In this picture, the moving entity is the electric field, and the work is performed on this
moving entity. If we now return to the EP, we find that a charge supported in a GF does
not behave as a charge accelerated in a constant acceleration—the supported charge does not
radiate. However, if we consider the basic question presented by the EP, ‘would a system of a
supported charge in a GF behave as a system of a charge accelerated in free space’, the answer
is positive: both systems radiate.

4. Summary

The topic presented here is actually an extension of an earlier work [8]. In that work, the point
was to show that fields are not only pedagogical or technical concepts that help to describe
and calculate physical processes. Fields are independent physical entities, as Einstein has
suggested [10], and they should be treated accordingly.

In the present work this concept is pushed further. When a charge is accelerated in free
space, the stress force created in the curved EF of the charge interacts with the charge (which
is the moving object), and overcoming this reaction force, radiation is created. When the
charge is supported statically and its EF falls in the GF, the stress force interacts with the EF,
and overcoming this reaction force, radiation is created.

Thus, if we relate the EP to the system charge + EF, we find that in both cases radiation
is created and the EP is satisfied.
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Appendix A

The angular distribution of the power, P, radiated by a linearly accelerated charge is given in
the textbooks (see [11]):

dP

d�
= e2a2

4πc3

sin2 θ

(1 − β cos θ)5
(A.1)

where θ is the angle between the direction of motion and the direction of the emitted radiation.
Integrating this formula over the angles yields:

P = 2

3

e2(γ 3a)2

c3
(A.2)

which for low velocities (γ → 1) yields

P = 2

3

e2a2

c3
. (A.3)

This is the Larmor formula for the power carried by radiation from an accelerated charge.

Appendix B

The equations for the electric field of a charge supported in a homogenous gravitational field
of strength, g, are given by Rohrlich [9] using cylindrical coordinates (ρ, z, φ):
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Eρ = 8eα3ρu2

ξ 3
(B.1)

Ez = −4eα3uu′

ξ 3
(α2(1 − u2) + ρ2) (B.2)

ξ 2 = (α2(1 − u2) − ρ2)2 + 4α2ρ2 (B.3)

where u−1 = cosh
(√

(1 − gz)2 − 1
)

and u′ = du/dz. α = c2/g is the radius of curvature of
the electric field close to the location of the charge.

From these equations we can calculate the derivative of z with respect to ρ for the field
lines of force (see Singal [12]). This expression cannot be integrated analytically. However,
using this derivative, the line of force can be calculated numerically and drawn—this is how
figure 1 was drawn.
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